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Why causal inference?
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Why causal inference?

Another example: What price should we charge for a night in a hotel?

Machine Learning Causal Inference
e Focuses on prediction e Focuses on counterfactuals
e High prices are strongly correlated e What would sales look like If prices
with higher sales were higher?

e INncrease prices to attract more
people?
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Goal of Causal Inference

e Goal: Estimate effect of some policy or program

e Key building block for causal inference is the idea of potential outcomes
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Treatment D;

1 with treatment
D, = ,
0 without treatment
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Potential outcomes

e Yi; is the potential outcome for unit 2 with treatment
o Y); is the potential outcome for unit ¢ without treatment
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Observed outcome
Y, =Y, x D; + Yy x (1 — D)

or

v _ [Yuif D=1
"7\ Yo if D; = 0

Assumes SUTVA (stable unit treatment value assumption)...no interference across
units
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Example of "Potential Outcomes"

(%) EMORY UNIVERSITYS =28

A

Y= 575,000 Y= 560,000
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Example of "Potential Outcomes"

(%) EMORY UNIVERSITYS =28

A

Y1=575,000 Y= 560,000

Earnings due to Emory = Y7 — Yy = $15,000
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Example of "Potential Outcomes"

Y= $75,000 Yy="?
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Example of "Potential Outcomes"

Y:= 575,000 Yy="?

Earnings due to Emory =Y; — Yy =7
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Do we ever observe the potential outcomes?

Without a time machine..not possible to get individual effects.
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Fundamental Problem of Causal Inference

e We don't observe the counterfactual outcome..what would have happened If a
treated unit was actually untreated.

e ALL attempts at causal inference represent some attempt at estimating the
counterfactual outcome. We need an estimate for Yy among those that were
treated, and vice versa for Yj.
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Average Treatment Effects
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Different treatment effects

Tend to focus on averages':

e ATE: § 475 = E[Y1 — Y))

OATTZ(SATT:E:H—YE)D:]_]

« ATU: )47y = E|Y: — Yy|D = 0]

T or similar measures such as medians or quantiles
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Average Treatment Effects

o Estimand:
dare = ElY1 —Yo| = E|Y|D =1] - E|Y|D = 0

o Estimate:

. 1
Sarp=— > Y, — — § : Y;,

where IN7 is number of treated and Ny is number untreated (control)

e With random assignment and equal groups, inference/hypothesis testing with
standard two-sample t-test
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Selection Bias
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o Assume (for simplicity) constant effects, Y7; = Yp; + 0

e Since we don't observe Yy and Y7, we have to use the observed outcomes, Y;
EY;|D; = 1| — EY;|D; = 0]
=FE[Yy;|D; = 1] — E|Yy;|D; = 0]
=0 + E|Yy|D; = 1] — E|Yy;|D; = 0]
—ATE + Selection Bias
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e Selection bias means E[Yy;|D; = 1] — E|Yy|D; = 0] # 0

e In words, the potential outcome without treatment, Yy;, is different between
those that ultimately did and did not receive treatment.

e £.g, treated group was going to be better on average even without treatment
(higher wages, healthier, etc.)
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e How to "remove" selection bias?
e« How about random assignment?
e In this case, treatment assignment doesn't tell us anything about Yp;
EYy|D; = 1] = E[Yy|D; = 0],
such that

EY;|D; = 1] — E[Y;|D; = 0] = 6415 = darT = daTU
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e Without random assignment, there's a high probability that
E[Yy;|D; = 1] # E|Yy;|D; = 0]

e |, outcomes without treatment are different for the treated group
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Omitted variables bias

e INn a regression setting, selection bias Is the same problem as omitted
variables bias (OVB)

e Quick review: Goal of OLS Is to find B to "best fit" the linear equation
Yi = o+ zif + €
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Regression review
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Omitted variables bias

e Interested In estimate of the effect of schooling on wages
Yi = a+ Bs; +7v4i + €
e But we don't observe ability, 4;, so we estimate
Yi=a+ Bsi +u

o What is our estimate of 8 from this regression?
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Omitted variables bias

s Cov(Y;, s;)

b= Var(s;)

~ Cov(a+ Bs; +vA; + €, s;)

N Var(s;)

~ BCou(si, s;) + yCou(A;, s;) + Cov(e;, 8;)

B Var(s;)
Var(s;) Cov(A;, s;)
Var(s;) Var(s;)

= P+ 7 X Oas

+0
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Removing selection bias without RCT

e The field of causal inference Is all about different strategies to remove
selection bias

e The first strategy (really, assumption) in this class: selection on observables
or conditional indpendence
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o Example: Does having health insurance, D; = 1, improve your health relative
to someone without health insurance, D; = 0?

e Y7; denotes health with insurance, and Yy; health without insurance (these
are potential outcomes)

e Inraw data, |Y;|D; = 1] > E[Y;|D; = 0], but is that causal?
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Some assumptions:

e Yoi = a+

¢ Yi; — Yy =0

e There is some set of "controls", x;, such that n; = Bx; + u; and
Elu;|x;] = 0 (conditional independence assumption, or CIA)

Y, =Y,; x D; + Yy x (1 - D;)
=0D; + Yo;D; + Yo; — Yo; D;

:5Di—|—a—|—m
=0D; + o+ Bz; + u;
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ATEs versus regression coefficients

e Estimating the regression equation,
Y = a+0D; + Bz; + u,
provides a causal estimate of the effect of D; on Y;

e But what does that really mean?
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ATEs vs regression coefficients

o Ceteris paribus ("with other conditions remaining the same"), a change in D;

will lead to a change in Y; in the amount ofS

e But Is ceteris paribus informative about policy?
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ATEs vs regression coefficients

e Yi; = Yy; + 90;D; (allows for heterogeneous effects)
o Y, = a+ BD; +vX; + €, with Yy;, Y1; 1L D;|X;
e Aronow and Samii, 2016, show that:

B

where w; = (D; — E[D;|X;])*
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ATEs vs regression coefficients

e SiImplify to ATT and ATU
« Y1, = Y0 + 0arrDi + d47v(1 — Dy)
e Y, = a+ BD; +vX; + €, with Yy, Y1, 1L D;| X;

P(D; = 1) x 7(X;|D; = 1) x (1 — w(X;|D; = 1)) s
> o1 P(Di = j) x n(Xi|D; = j) x (1 — n(X;|Di = ) *"
P(D; = 0) x n(X;|D; = 0) x (1 — m(X;|D; = 0))

" ' : —0
ZjZO,l P(Dz — ]) X 7T(X’L|-Dz — ]) X (]_ _ W(XZ‘-Dz _ ])) ATT

b=
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ATEs vs regression coefficients

What does this mean?

e OLS puts more weight on observations with treatment D; "unexplained" by
X

e "Reverse" weighting such that the proportion of treated units are used to
welght the ATU while the proportion of untreated units enter the weights of

the ATT

e This is an average effect, but probably not the average we want
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