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Why causal inference?
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Machine Learning

Focuses on prediction
High prices are strongly correlated
with higher sales
Increase prices to attract more
people?

Causal Inference

Focuses on counterfactuals
What would sales look like if prices
were higher?

Why causal inference?

Another example: What price should we charge for a night in a hotel?
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Goal of Causal Inference

Goal: Estimate effect of some policy or program

Key building block for causal inference is the idea of potential outcomes
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Some notation

Treatment Di

Di = {
1 with treatment
0 without treatment
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Some notation

Potential outcomes

 is the potential outcome for unit  with treatment
 is the potential outcome for unit  without treatment

Y1i i

Y0i i
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Some notation

Observed outcome

or

Yi = Y1i × Di + Y0i × (1 − Di)

Yi = {
Y1i if Di = 1
Y0i if Di = 0

Assumes SUTVA (stable unit treatment value assumption)...no interference across
units
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= $75,000 = $60,000

Example of "Potential Outcomes"

Y1 Y0

8 / 33



= $75,000 = $60,000

Example of "Potential Outcomes"

Earnings due to Emory =  = $15,000

Y1 Y0

Y1 − Y0
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= $75,000 = ?

Example of "Potential Outcomes"

Y1 Y0

10 / 33



= $75,000 = ?

Example of "Potential Outcomes"

Earnings due to Emory =  = ?

Y1 Y0

Y1 − Y0
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Do we ever observe the potential outcomes?

Without a time machine...not possible to get individual effects.
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Fundamental Problem of Causal Inference

We don't observe the counterfactual outcome...what would have happened if a
treated unit was actually untreated.

ALL attempts at causal inference represent some attempt at estimating the
counterfactual outcome. We need an estimate for  among those that were
treated, and vice versa for .

Y0

Y1
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Average Treatment Effects
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Different treatment effects

Tend to focus on averages1:

ATE: 

ATT: 

ATU: 

δAT E = E[Y1 − Y0]

δAT T = E[Y1 − Y0|D = 1]

δAT U = E[Y1 − Y0|D = 0]

1 or similar measures such as medians or quantiles
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Average Treatment Effects

Estimand:

Estimate:

where  is number of treated and  is number untreated (control)

With random assignment and equal groups, inference/hypothesis testing with
standard two-sample t-test

δAT E = E[Y1 − Y0] = E[Y |D = 1] − E[Y |D = 0]

δ̂ AT E = ∑
Di=1

Yi − ∑
Di=0

Yi,
1

N1

1

N0

N1 N0
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Selection Bias
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Selection bias

Assume (for simplicity) constant effects, 

Since we don't observe  and , we have to use the observed outcomes, 

Y1i = Y0i + δ

Y0 Y1 Yi

E[Yi|Di = 1] − E[Yi|Di = 0]

=E[Y1i|Di = 1] − E[Y0i|Di = 0]

=δ + E[Y0i|Di = 1] − E[Y0i|Di = 0]

=ATE +  Selection Bias
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Selection bias

Selection bias means 

In words, the potential outcome without treatment, , is different between
those that ultimately did and did not receive treatment.

e.g., treated group was going to be better on average even without treatment
(higher wages, healthier, etc.)

E[Y0i|Di = 1] − E[Y0i|Di = 0] ≠ 0

Y0i
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Selection bias

How to "remove" selection bias?

How about random assignment?

In this case, treatment assignment doesn't tell us anything about 

such that

Y0i

E[Y0i|Di = 1] = E[Y0i|Di = 0],

E[Yi|Di = 1] − E[Yi|Di = 0] = δAT E = δAT T = δAT U
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Selection bias

Without random assignment, there's a high probability that

i.e., outcomes without treatment are different for the treated group

E[Y0i|Di = 1] ≠ E[Y0i|Di = 0]
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Omitted variables bias

In a regression setting, selection bias is the same problem as omitted
variables bias (OVB)

Quick review: Goal of OLS is to find  to "best fit" the linear equationβ̂

yi = α + xiβ + ϵi
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Regression review

min
β

N

∑
i=1

(yi − α − xiβ)
2

= min
β

N

∑
i=1

(yi − (ȳ − x̄β) − xiβ)
2

0 =
N

∑
i=1

(yi − ȳ − (xi − x̄)β̂) (xi − x̄)

0 =
N

∑
i=1

(yi − ȳ)(xi − x̄) − β̂

N

∑
i=1

(xi − x̄)2

β̂ = =
∑

N
i=1(yi − ȳ)(xi − x̄)

∑
N
i=1(xi − x̄)2

Cov(y, x)

V ar(x)
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Omitted variables bias

Interested in estimate of the effect of schooling on wages

But we don't observe ability, , so we estimate

What is our estimate of  from this regression?

Yi = α + βsi + γAi + ϵi

Ai

Yi = α + βsi + ui

β
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Omitted variables bias

β̂ =

=

=

= β + γ + 0

= β + γ × θas

Cov(Yi, si)

V ar(si)

Cov(α + βsi + γAi + ϵi, si)

V ar(si)

βCov(si, si) + γCov(Ai, si) + Cov(ϵi, si)

V ar(si)

V ar(si)

V ar(si)

Cov(Ai, si)

V ar(si)
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Removing selection bias without RCT

The field of causal inference is all about different strategies to remove
selection bias

The first strategy (really, assumption) in this class: selection on observables
or conditional indpendence
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Intuition

Example: Does having health insurance, , improve your health relative
to someone without health insurance, ?

 denotes health with insurance, and  health without insurance (these
are potential outcomes)

In raw data, , but is that causal?

Di = 1

Di = 0

Y1i Y0i

[Yi|Di = 1] > E[Yi|Di = 0]

27 / 33



Intuition

Some assumptions:

There is some set of "controls", , such that  and
 (conditional independence assumption, or CIA)

Y0i = α + ηi

Y1i − Y0i = δ

xi ηi = βxi + ui

E[ui|xi] = 0

Yi = Y1i × Di + Y0i × (1 − Di)

= δDi + Y0iDi + Y0i − Y0iDi

= δDi + α + ηi

= δDi + α + βxi + ui
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ATEs versus regression coefficients

Estimating the regression equation,

provides a causal estimate of the effect of  on 

But what does that really mean?

Yi = α + δDi + βxi + ui

Di Yi
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ATEs vs regression coefficients

Ceteris paribus ("with other conditions remaining the same"), a change in 
will lead to a change in  in the amount of 

But is ceteris paribus informative about policy?

Di

Yi δ̂
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ATEs vs regression coefficients

 (allows for heterogeneous effects)

, with 

Aronow and Samii, 2016, show that:

where 

Y1i = Y0i + δiDi

Yi = α + βDi + γXi + ϵi Y0i, Y1i ⊥⊥ Di|Xi

β̂ →p ,
E[wiδi]

E[wi]

wi = (Di − E[Di|Xi])
2
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ATEs vs regression coefficients

Simplify to ATT and ATU

, with 
Y1i = Y0i + δAT T Di + δAT U(1 − Di)

Yi = α + βDi + γXi + ϵi Y0i, Y1i ⊥⊥ Di|Xi

β = δAT U

+ δAT T

P(Di = 1) × π(Xi|Di = 1) × (1 − π(Xi|Di = 1))

∑j=0,1 P(Di = j) × π(Xi|Di = j) × (1 − π(Xi|Di = j))

P(Di = 0) × π(Xi|Di = 0) × (1 − π(Xi|Di = 0))

∑j=0,1 P(Di = j) × π(Xi|Di = j) × (1 − π(Xi|Di = j))

32 / 33



ATEs vs regression coefficients

What does this mean?

OLS puts more weight on observations with treatment  "unexplained" by

"Reverse" weighting such that the proportion of treated units are used to
weight the ATU while the proportion of untreated units enter the weights of
the ATT

This is an average effect, but probably not the average we want

Di

Xi
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