class: center, middle, inverse, title-slide .title[ # Module 4: Difference-in-Differences and Effects of Medicaid Expansion ] .subtitle[ ## Part 3: Understanding Difference-in-Differences ] .author[ ### Ian McCarthy | Emory University ] .date[ ### Econ 470 & HLTH 470 ] --- class: inverse, center, middle <!-- Adjust some CSS code for font size and maintain R code font size --> <style type="text/css"> .remark-slide-content { font-size: 30px; padding: 1em 2em 1em 2em; } .remark-code { font-size: 15px; } .remark-inline-code { font-size: 20px; } </style> <!-- Set R options for how code chunks are displayed and load packages --> # The Idea of DD <html><div style='float:left'></div><hr color='#EB811B' size=1px width=1055px></html> --- # Setup Want to estimate `\(E[Y_{1}(1)- Y_{0}(1) | D=1]\)` ![:col_header , Post-period, Pre-period] ![:col_row Treated, \(E(Y_{1}(1)|D=1)\), \(E(Y_{0}(0)|D=1)\)] ![:col_row Control, \(E(Y_{0}(1)|D=0)\), \(E(Y_{0}(0)|D=0)\)] <br> Problem: We don't see `\(E[Y_{0}(1)|D=1]\)` --- # Setup Want to estimate `\(E[Y_{1}(1)- Y_{0}(1) | D=1]\)` ![:col_header , Post-period, Pre-period] ![:col_row Treated, \(E(Y_{1}(1)|D=1)\), \(E(Y_{0}(0)|D=1)\)] ![:col_row Control, \(E(Y_{0}(1)|D=0)\), \(E(Y_{0}(0)|D=0)\)] <br> **Strategy 1:** Estimate `\(E[Y_{0}(1)|D=1]\)` using `\(E[Y_{0}(0)|D=1]\)` (before treatment outcome used to estimate post-treatment) --- # Setup Want to estimate `\(E[Y_{1}(1)- Y_{0}(1) | D=1]\)` ![:col_header , Post-period, Pre-period] ![:col_row Treated, \(E(Y_{1}(1)|D=1)\), \(E(Y_{0}(0)|D=1)\)] ![:col_row Control, \(E(Y_{0}(1)|D=0)\), \(E(Y_{0}(0)|D=0)\)] <br> **Strategy 2:** Estimate `\(E[Y_{0}(1)|D=1]\)` using `\(E[Y_{0}(1)|D=0]\)` (control group used to predict outcome for treatment) --- # Setup Want to estimate `\(E[Y_{1}(1)- Y_{0}(1) | D=1]\)` ![:col_header , Post-period, Pre-period] ![:col_row Treated, \(E(Y_{1}(1)|D=1)\), \(E(Y_{0}(0)|D=1)\)] ![:col_row Control, \(E(Y_{0}(1)|D=0)\), \(E(Y_{0}(0)|D=0)\)] <br> **Strategy 3:** DD estimate... Estimate `\(E[Y_{1}(1)|D=1] - E[Y_{0}(1)|D=1]\)` using `\(E[Y_{0}(1)|D=0] - E[Y_{0}(0)|D=0]\)` (pre-post difference in control group used to predict difference for treatment group) --- # Graphically <img src="pics/standard-dd.png" width="700px" style="display: block; margin: auto;" /> --- # Animations .center[ ![](pics/dd_animate.gif) ] --- class: inverse, center, middle name: estimation # Average Treatment Effects with DD <html><div style='float:left'></div><hr color='#EB811B' size=1px width=1055px></html> --- # Estimation Key identifying assumption is that of *parallel trends* -- `$$E[Y_{0}(1) - Y_{0}(0)|D=1] = E[Y_{0}(1) - Y_{0}(0)|D=0]$$` --- # Estimation Sample means:<br> `$$\begin{align} E[Y_{1}(1) - Y_{0}(1)|D=1] &=& \left( E[Y(1)|D=1] - E[Y(1)|D=0] \right) \\ & & - \left( E[Y(0)|D=1] - E[Y(0)|D=0]\right) \end{align}$$` --- # Estimation Regression:<br> `\(y_{it} = \alpha + \beta D_{i} + \lambda \times Post_{t} + \delta \times D_{i} \times Post_{t} + \varepsilon_{it}\)` <br> ![:col_header , After, Before, After - Before] ![:col_row Treated, \(\alpha + \beta + \lambda + \delta\), \(\alpha + \beta\), \(\lambda + \delta\)] ![:col_row Control, \(\alpha + \lambda\), \(\alpha\), \(\lambda\)] ![:col_row Treated - Control, \(\beta + \delta\), \(\beta\), \(\delta\)] --- # Simulated data ```r N <- 5000 dd.dat <- tibble( d = (runif(N, 0, 1)>0.5), time_pre = "pre", time_post = "post" ) dd.dat <- pivot_longer(dd.dat, c("time_pre","time_post"), values_to="time") %>% select(d, time) %>% mutate(t=(time=="post"), y.out=1.5+3*d + 1.5*t + 6*d*t + rnorm(N*2,0,1)) ``` --- # Mean differences ```r dd.means <- dd.dat %>% group_by(d, t) %>% summarize(mean_y = mean(y.out)) knitr::kable(dd.means, col.names=c("Treated","Post","Mean"), format="html") ``` <table> <thead> <tr> <th style="text-align:left;"> Treated </th> <th style="text-align:left;"> Post </th> <th style="text-align:right;"> Mean </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> FALSE </td> <td style="text-align:left;"> FALSE </td> <td style="text-align:right;"> 1.536235 </td> </tr> <tr> <td style="text-align:left;"> FALSE </td> <td style="text-align:left;"> TRUE </td> <td style="text-align:right;"> 3.014374 </td> </tr> <tr> <td style="text-align:left;"> TRUE </td> <td style="text-align:left;"> FALSE </td> <td style="text-align:right;"> 4.515127 </td> </tr> <tr> <td style="text-align:left;"> TRUE </td> <td style="text-align:left;"> TRUE </td> <td style="text-align:right;"> 11.970610 </td> </tr> </tbody> </table> --- # Mean differences In this example: - `\(E[Y(1)|D=1] - E[Y(1)|D=0]\)` is 8.9562357 - `\(E[Y(0)|D=1] - E[Y(0)|D=0]\)` is 2.9788923 <br> <br> So the ATT is 5.9773434 --- # Regression estimator ```r library(modelsummary) dd.est <- lm(y.out ~ d + t + d*t, data=dd.dat) modelsummary(dd.est, gof_map=NA, coef_omit='Intercept') ``` <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> (1) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> dTRUE </td> <td style="text-align:center;"> 2.979 </td> </tr> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (0.028) </td> </tr> <tr> <td style="text-align:left;"> tTRUE </td> <td style="text-align:center;"> 1.478 </td> </tr> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (0.028) </td> </tr> <tr> <td style="text-align:left;"> dTRUE × tTRUE </td> <td style="text-align:center;"> 5.977 </td> </tr> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (0.040) </td> </tr> </tbody> </table> --- class: inverse, center, middle name: handson # Seeing things in action <html><div style='float:left'></div><hr color='#EB811B' size=1px width=1055px></html> --- # Application - Try out some real data on Medicaid expansion following the ACA - **Question:** Did Medicaid expansion reduce uninsurance? --- # Step 1: Look at the data .pull-left[ **Stata**<br> ```stata insheet using "data/acs_medicaid.txt", clear gen perc_unins=uninsured/adult_pop keep if expand_year=="2014" | expand_year=="NA" drop if expand_ever=="NA" collapse (mean) perc_unins, by(year expand_ever) graph twoway (connected perc_unins year if expand_ever=="FALSE", color(black) lpattern(solid)) /// (connected perc_unins year if expand_ever=="TRUE", color(black) lpattern(dash)), /// xline(2013.5) /// ytitle("Fraction Uninsured") xtitle("Year") legend(off) text(0.15 2017 "Non-expansion", place(e)) text(0.08 2017 "Expansion", place(e)) ``` ] .pull-right[ **R**<br> ```r library(tidyverse) # mcaid.data <- read_tsv("https://raw.githubusercontent.com/imccart/Insurance-Access/master/data/output/acs_medicaid.txt") mcaid.data <- read_tsv("../data/acs_medicaid.txt") ins.plot.dat <- mcaid.data %>% filter(expand_year==2014 | is.na(expand_year), !is.na(expand_ever)) %>% mutate(perc_unins=uninsured/adult_pop) %>% group_by(expand_ever, year) %>% summarize(mean=mean(perc_unins)) ins.plot <- ggplot(data=ins.plot.dat, aes(x=year,y=mean,group=expand_ever,linetype=expand_ever)) + geom_line() + geom_point() + theme_bw() + geom_vline(xintercept=2013.5, color="red") + geom_text(data = ins.plot.dat %>% filter(year == 2016), aes(label = c("Non-expansion","Expansion"), x = year + 1, y = mean)) + guides(linetype="none") + labs( x="Year", y="Fraction Uninsured", title="Share of Uninsured over Time" ) ``` ] --- # Step 1: Look at the data <img src="04-dd-part1_files/figure-html/unnamed-chunk-7-1.png" style="display: block; margin: auto;" /> --- # Step 2: Estimate effects Interested in `\(\delta\)` from: `$$y_{it} = \alpha + \beta \times Post_{t} + \lambda \times Expand_{i} + \delta \times Post_{t} \times Expand_{i} + \varepsilon_{it}$$` .pull-left[ **Stata**<br> ```stata insheet using "data/acs_medicaid.txt", clear gen perc_unins=uninsured/adult_pop keep if expand_year=="2014" | expand_year=="NA" drop if expand_ever=="NA" gen post=(year>=2014) gen treat=(expand_ever=="TRUE") gen treat_post=(expand=="TRUE") reg perc_unins treat post treat_post **also try didregress ``` ] .pull-right[ **R**<br> ```r library(tidyverse) library(modelsummary) mcaid.data <- read_tsv("../data/acs_medicaid.txt") reg.dat <- mcaid.data %>% filter(expand_year==2014 | is.na(expand_year), !is.na(expand_ever)) %>% mutate(perc_unins=uninsured/adult_pop, post = (year>=2014), treat=post*expand_ever) dd.ins.reg <- lm(perc_unins ~ post + expand_ever + post*expand_ever, data=reg.dat) ``` ] --- # Step 2: Estimate effects <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> DD (2014) </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> postTRUE </td> <td style="text-align:center;"> −0.054 </td> </tr> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (0.003) </td> </tr> <tr> <td style="text-align:left;"> expand_everTRUE </td> <td style="text-align:center;"> −0.046 </td> </tr> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (0.016) </td> </tr> <tr> <td style="text-align:left;"> postTRUE × expand_everTRUE </td> <td style="text-align:center;"> −0.019 </td> </tr> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (0.007) </td> </tr> </tbody> </table> --- # Final DD thoughts - Key identification assumption is **parallel trends** - Inference: Typically want to cluster at unit-level to allow for correlation over time within units, but problems with small numbers of treated or control groups: - Conley-Taber CIs - Wild cluster bootstrap - Randomization inference - "Extra" things like propensity score weighting and doubly robust estimation --- class: inverse, center, middle name: twfe # DD and TWFE <html><div style='float:left'></div><hr color='#EB811B' size=1px width=1055px></html> --- # What is TWFE? - Just a shorthand for a common regression specification - Fixed effects for each unit and each time period, `\(\gamma_{i}\)` and `\(\gamma_{t}\)` - More general than 2x2 DD but same result --- # What is TWFE? Want to estimate `\(\delta\)`: `$$y_{it} = \alpha + \delta D_{it} + \gamma_{i} + \gamma_{t} + \varepsilon_{it},$$`<br> where `\(\gamma_{i}\)` and `\(\gamma_{t}\)` denote a set of unit `\(i\)` and time period `\(t\)` dummy variables (or fixed effects). --- # TWFE in Practice **2x2 DD** ```r library(tidyverse) library(modelsummary) mcaid.data <- read_tsv("../data/acs_medicaid.txt") reg.dat <- mcaid.data %>% filter(expand_year==2014 | is.na(expand_year), !is.na(expand_ever)) %>% mutate(perc_unins=uninsured/adult_pop, post = (year>=2014), treat=post*expand_ever) m.dd <- lm(perc_unins ~ post + expand_ever + treat, data=reg.dat) ``` **TWFE** ```r library(fixest) m.twfe <- feols(perc_unins ~ treat | State + year, data=reg.dat) ``` --- # TWFE in Practice <table class="table" style="width: auto !important; margin-left: auto; margin-right: auto;"> <thead> <tr> <th style="text-align:left;"> </th> <th style="text-align:center;"> DD </th> <th style="text-align:center;"> TWFE </th> </tr> </thead> <tbody> <tr> <td style="text-align:left;"> postTRUE </td> <td style="text-align:center;"> −0.054 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (0.003) </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> expand_everTRUE </td> <td style="text-align:center;"> −0.046 </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (0.016) </td> <td style="text-align:center;"> </td> </tr> <tr> <td style="text-align:left;"> treat </td> <td style="text-align:center;"> −0.019 </td> <td style="text-align:center;"> −0.019 </td> </tr> <tr> <td style="text-align:left;"> </td> <td style="text-align:center;"> (0.007) </td> <td style="text-align:center;"> (0.007) </td> </tr> </tbody> </table> --- class: inverse, center, middle name: event # Event Studies <html><div style='float:left'></div><hr color='#EB811B' size=1px width=1055px></html> --- # What is an event study? Event study is poorly named: - In finance, even study is just an *interrupted time series* - In econ and other areas, we usually have a treatment/control group *and* a break in time --- # What is an event study? - Allows for heterogeneous effects over time (maybe effects phase in over time or dissipate) - Visually very appealing - Offers easy evidence against or consistent with parallel trends assumption --- # What is an event study? Estimate something akin to... `$$y_{it} = \gamma_{i} + \gamma_{t} + \sum_{\tau = -q}^{-2}\delta_{\tau} D_{i \tau} + \sum_{\tau=0}^{m} \delta_{\tau}D_{i \tau} + \beta x_{it} + \epsilon_{it},$$` where `\(q\)` captures the number of periods before the treatment occurs and `\(m\)` captures periods after treatment occurs. --- # How to do an event study? 1. Create all treatment/year interactions 2. Regressions with full set of interactions and group/year FEs 3. Plot coefficients and standard errors --- # Things to address 1. "Event time" vs calendar time 2. Define baseline period 3. Choose number of pre-treatment and post-treatment coefficients --- # Event time vs calendar time Essentially two "flavors" of event studies 1. Common treatment timing 2. Differential treatment timing --- # Define baseline period - Must choose an "excluded" time period (as in all cases of group dummy variables) - Common choice is `\(t=-1\)` (period just before treatment) - Easy to understand with calendar time - For event time...manually set time to `\(t=-1\)` for all untreated units --- # Number of pre-treatment and post-treatment periods - On event time, sometimes very few observations for large lead or lag values - Medicaid expansion example: Late adopting states have fewer post-treatment periods - Norm is to group final lead/lag periods together --- # Commont treatment timing .pull-left[ **Stata**<br> ```stata ssc install reghdfe insheet using "data/acs_medicaid.txt", clear gen perc_unins=uninsured/adult_pop keep if expand_year=="2014" | expand_year=="NA" drop if expand_ever=="NA" gen post=(year>=2014) gen treat=(expand_ever=="TRUE") gen treat_post=(expand=="TRUE") reghdfe perc_unins treat##ib2013.year, absorb(state) gen coef = . gen se = . forvalues i = 2012(1)2018 { replace coef = _b[1.treat#`i'.year] if year == `i' replace se = _se[1.treat#`i'.year] if year == `i' } * Make confidence intervals gen ci_top = coef+1.96*se gen ci_bottom = coef - 1.96*se * Limit ourselves to one observation per year keep year coef se ci_* duplicates drop * Create connected scatterplot of coefficients * with CIs included with rcap * and a line at 0 from function twoway (sc coef year, connect(line)) (rcap ci_top ci_bottom year) /// (function y = 0, range(2012 2018)), xtitle("Year") /// caption("Estimates and 95% CI from Event Study") ``` ] .pull-right[ **R**<br> ```r library(tidyverse) library(modelsummary) library(fixest) mcaid.data <- read_tsv("../data/acs_medicaid.txt") reg.dat <- mcaid.data %>% filter(expand_year==2014 | is.na(expand_year), !is.na(expand_ever)) %>% mutate(perc_unins=uninsured/adult_pop, post = (year>=2014), treat=post*expand_ever) mod.twfe <- feols(perc_unins~i(year, expand_ever, ref=2013) | State + year, cluster=~State, data=reg.dat) ``` ] --- # Common treatment timing <img src="04-dd-part1_files/figure-html/unnamed-chunk-16-1.png" style="display: block; margin: auto;" /> --- # Differential treatment timing - Now let's work with the full Medicaid expansion data - Includes late adopters - Requires putting observations on "event time" --- # Differential treatment timing .pull-left[ **Stata**<br> ```stata ssc install reghdfe insheet using "data/acs_medicaid.txt", clear gen perc_unins=uninsured/adult_pop drop if expand_ever=="NA" replace expand_year="." if expand_year=="NA" destring expand_year, replace gen event_time=year-expand_year replace event_time=-1 if event_time==. forvalues l = 0/4 { gen L`l'event = (event_time==`l') } forvalues l = 1/2 { gen F`l'event = (event_time==-`l') } gen F3event=(event_time<=-3) reghdfe perc_unins F3event F2event L0event L1event L2event L3event L4event, absorb(state year) cluster(state) gen coef = . gen se = . forvalues i = 2(1)3 { replace coef = _b[F`i'event] if F`i'event==1 replace se = _se[F`i'event] if F`i'event==1 } forvalues i = 0(1)4 { replace coef = _b[L`i'event] if L`i'event==1 replace se = _se[L`i'event] if L`i'event==1 } replace coef = 0 if F1event==1 replace se=0 if F1event==1 * Make confidence intervals gen ci_top = coef+1.96*se gen ci_bottom = coef - 1.96*se * Limit ourselves to one observation per year keep if event_time>=-3 & event_time<=4 keep event_time coef se ci_* duplicates drop * Create connected scatterplot of coefficients * with CIs included with rcap * and a line at 0 from function sort event_time twoway (sc coef event_time, connect(line)) (rcap ci_top ci_bottom event_time) /// (function y = 0, range(-3 4)), xtitle("Time") /// caption("Estimates and 95% CI from Event Study") xlabel(-3(1)4) ``` ] .pull-right[ **R**<br> ```r library(tidyverse) library(modelsummary) library(fixest) mcaid.data <- read_tsv("../data/acs_medicaid.txt") reg.dat <- mcaid.data %>% filter(!is.na(expand_ever)) %>% mutate(perc_unins=uninsured/adult_pop, post = (year>=2014), treat=post*expand_ever, time_to_treat = ifelse(expand_ever==FALSE, 0, year-expand_year), time_to_treat = ifelse(time_to_treat < -3, -3, time_to_treat)) mod.twfe <- feols(perc_unins~i(time_to_treat, expand_ever, ref=-1) | State + year, cluster=~State, data=reg.dat) ``` ] --- # Differential treatment timing <img src="04-dd-part1_files/figure-html/unnamed-chunk-19-1.png" style="display: block; margin: auto;" /> --- class: inverse, center, middle name: what # What are we estimating? <html><div style='float:left'></div><hr color='#EB811B' size=1px width=1055px></html> --- # Problems with TWFE - Recall goal of estimating ATE or ATT - TWFE and 2x2 DD identical with homogeneous effects and common treatment timing - Otherwise...TWFE is biased and inconsistent for ATT --- # Intuition - OLS is a weighted average of all 2x2 DD groups - Weights are function of size of subsamples, size of treatment/control units, and timing of treatment - Units treated in middle of sample receive larger weights - Prior-treated units act as controls for late-treated units -- Just the length of the panel will change the estimate! --- # Does it really matter? - Definitely! But how much? - Large treatment effects for early treated units could reverse the sign of final estimate - Let's explore this nice Shiny app from Kyle Butts: [Bacon-Decomposition Shiny App](https://hhsievertsen.shinyapps.io/kylebutts_did_eventstudy/). --- # Note on parallel trends Parallel trends violated, in general, if: 1. Policy endogeneity (e.g., selection into treatment due to prior outcome) 2. Compositional differences (problematic in repeated cross-sections)