Module 4: Difference-in-Differences and Effects of Medicaid Expansion

Part 3: Understanding Difference-in-Differences

Ian McCarthy | Emory University Econ 470 & HLTH 470

The Idea of DD

Want to estimate
$$E[Y_1(1)-Y_0(1)|D=1]$$

	Post-period	Pre-period
		$E(Y_0(0)ert D=1)$
Control	$E(Y_0(1) D=0)$	$E(Y_0(0) D=0)$

Problem: We don't see $E[Y_0(1)|D=1]$

Want to estimate
$$E[Y_1(1)-Y_0(1)|D=1]$$

	Post-period	Pre-period
Treated	$E(Y_1(1)ert D=1)$	$E(Y_0(0)ert D=1)$
Control	$E(Y_0(1) D=0)$	$E(Y_0(0)ert D=0)$

Strategy 1: Estimate $E[Y_0(1)|D=1]$ using $E[Y_0(0)|D=1]$ (before treatment outcome used to estimate post-treatment)

Want to estimate
$$E[Y_1(1)-Y_0(1)|D=1]$$

	Post-period	Pre-period
Treated	$E(Y_1(1)ert D=1)$	$E(Y_0(0)ert D=1)$
Control	$E(Y_0(1) D=0)$	$E(Y_0(0)ert D=0)$

Strategy 2: Estimate $E[Y_0(1)|D=1]$ using $E[Y_0(1)|D=0]$ (control group used to predict outcome for treatment)

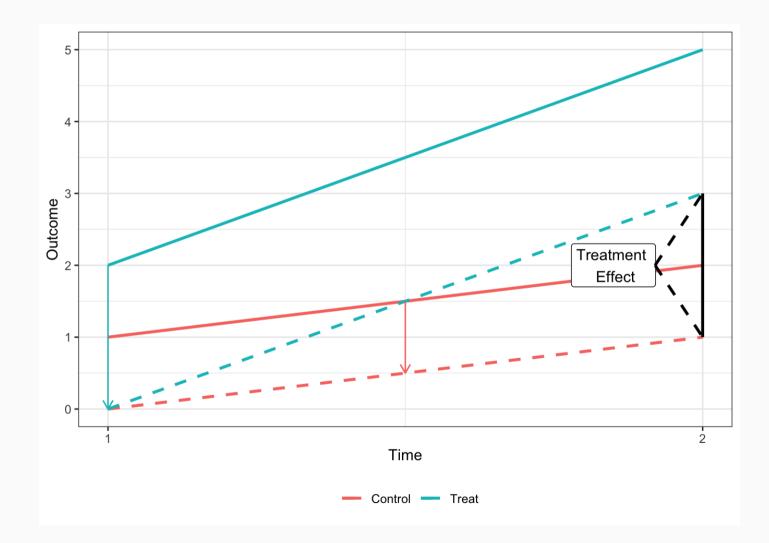
Want to estimate
$$E[Y_1(1)-Y_0(1)|D=1]$$

	Post-period	Pre-period
Treated	$E(Y_1(1)ert D=1)$	$E(Y_0(0) D=1)$
Control	$E(Y_0(1) D=0)$	$E(Y_0(0)ert D=0)$

Strategy 3: DD estimate...

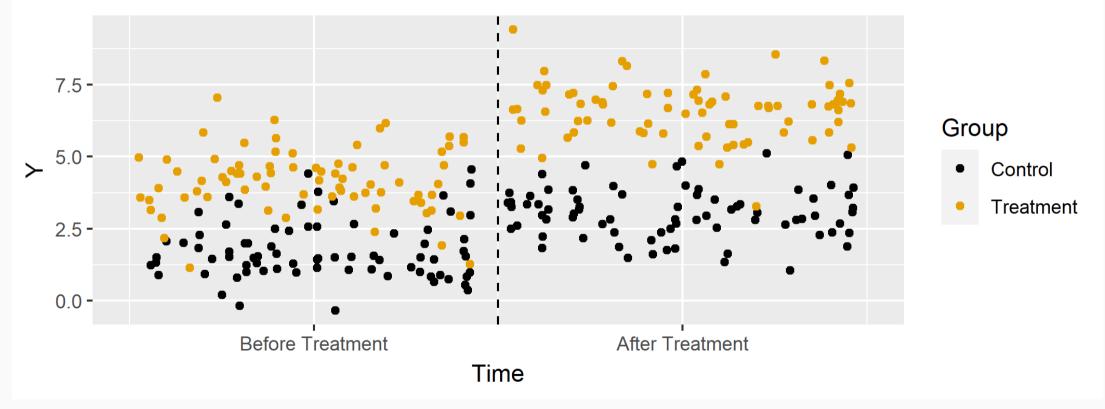
Estimate $E[Y_1(1)|D = 1] - E[Y_0(1)|D = 1]$ using $E[Y_0(1)|D = 0] - E[Y_0(0)|D = 0]$ (pre-post difference in control group used to predict difference for treatment group)

Graphically



Animations

The Difference-in-Difference Effect of Treatment 1. Start with raw data.



Average Treatment Effects with DD

Estimation

Key identifying assumption is that of *parallel trends*

$$E[Y_0(1) - Y_0(0)|D = 1] = E[Y_0(1) - Y_0(0)|D = 0]$$

Estimation

Sample means:

$$E[Y_1(1) - Y_0(1)|D = 1] = (E[Y(1)|D = 1] - E[Y(1)|D = 0]) - (E[Y(0)|D = 1] - E[Y(0)|D = 0])$$

Estimation

Regression:

$y_{it} = lpha + eta D_i + \lambda imes Post_t + \delta imes D_i imes Post_t + arepsilon_{it}$

	After	Before	After - Before
Treated	$lpha+eta+\lambda+\delta$	lpha+eta	$\lambda+\delta$
Control	$lpha+\lambda$	lpha	λ
Treated - Control	$eta+\delta$	eta	δ

Simulated data

Mean differences

dd.means ← dd.dat %>% group_by(d, t) %>% summarize(mean_y = mean(y.out))
knitr::kable(dd.means, col.names=c("Treated","Post","Mean"), format="html")

Treated	Post	Mean
FALSE	FALSE	1.536235
FALSE	TRUE	3.014374
TRUE	FALSE	4.515127
TRUE	TRUE	11.970610

Mean differences

In this example:

- E[Y(1)|D=1] E[Y(1)|D=0] is 8.9562357
- E[Y(0)|D=1] E[Y(0)|D=0] is 2.9788923

So the ATT is 5.9773434

Regression estimator

library(modelsummary)
dd.est ← lm(y.out ~ d + t + d*t, data=dd.dat)
modelsummary(dd.est, gof_map=NA, coef_omit='Intercept')

	(1)
dTRUE	2.979
	(0.028)
tTRUE	1.478
	(0.028)
dTRUE × tTRUE	5.977
	(0.040)

Seeing things in action

Application

- Try out some real data on Medicaid expansion following the ACA
- **Question:** Did Medicaid expansion reduce uninsurance?

Step 1: Look at the data

Stata

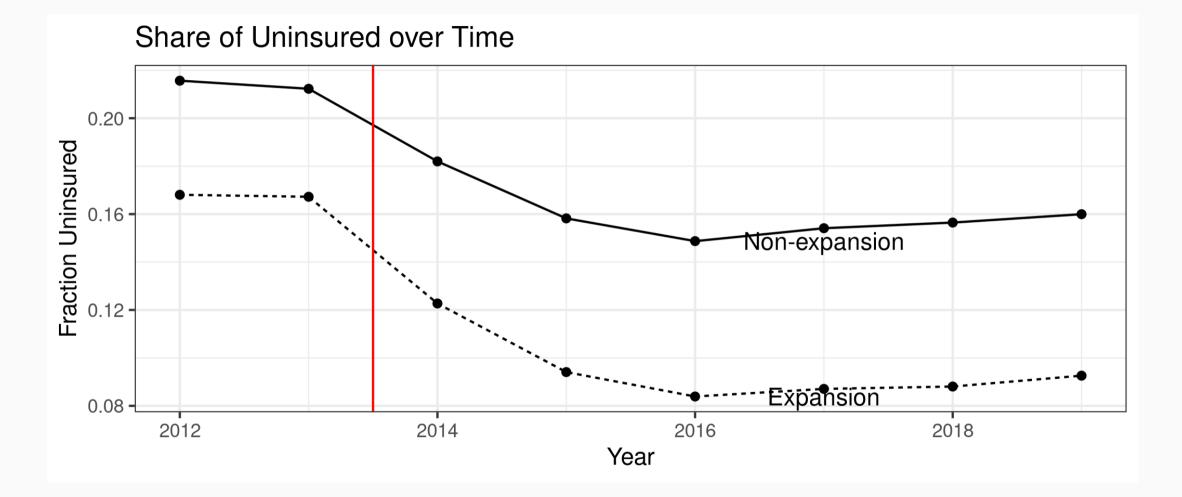
```
insheet using "data/acs_medicaid.txt", clear
gen perc_unins=uninsured/adult_pop
keep if expand_year="2014" | expand_year="NA"
drop if expand_ever="NA"
collapse (mean) perc_unins, by(year expand_ever)
graph twoway (connected perc_unins year if expand_ever=
   (connected perc_unins year if expand_ever="TRUE", col
   xline(2013.5) ///
   ytitle("Fraction Uninsured") xtitle("Year") legend(o
```

R

library(tidyverse)

mcaid.data ← read_tsv("https://raw.githubusercontent. mcaid.data ← read_tsv("../data/acs_medicaid.txt") ins.plot.dat ← mcaid.data %>% filter(expand_year=2014 mutate(perc_unins=uninsured/adult_pop) %>% group_by(expand_ever, year) %>% summarize(mean=mean(pe

Step 1: Look at the data



Step 2: Estimate effects

Interested in δ from:

$y_{it} = lpha + eta imes Post_t + \lambda imes Expand_i + \delta imes Post_t imes Expand_i + arepsilon_{it}$

Stata

```
insheet using "data/acs_medicaid.txt", clear
gen perc_unins=uninsured/adult_pop
keep if expand_year="2014" | expand_year="NA"
drop if expand_ever="NA"
gen post=(year ≥ 2014)
gen treat=(expand_ever="TRUE")
gen treat_post=(expand="TRUE")
```

reg perc_unins treat post treat_post

**also try didregress*

R

dd.ins.reg ← lm(perc_unins ~ post + expand_ever + post*

Step 2: Estimate effects

	DD (2014)
postTRUE	-0.054
	(0.003)
expand_everTRUE	-0.046
	(0.016)
postTRUE × expand_everTRUE	-0.019
	(0.007)

Final DD thoughts

- Key identification assumption is **parallel trends**
- Inference: Typically want to cluster at unit-level to allow for correlation over time within units, but problems with small numbers of treated or control groups:
 - Conley-Taber CIs
 - Wild cluster bootstrap
 - Randomization inference
- "Extra" things like propensity score weighting and doubly robust estimation

DD and TWFE

What is TWFE?

- Just a shorthand for a common regression specification
- Fixed effects for each unit and each time period, γ_i and γ_t
- More general than 2x2 DD but same result

What is TWFE?

Want to estimate δ :

$$y_{it} = lpha + \delta D_{it} + \gamma_i + \gamma_t + arepsilon_{it},$$

where γ_i and γ_t denote a set of unit i and time period t dummy variables (or fixed effects).

TWFE in Practice

2x2 DD

TWFE

library(fixest)
m.twfe ← feols(perc_unins ~ treat | State + year, data=reg.dat)

	DD	TWFE
postTRUE	-0.054	
	(0.003)	
expand_everTRUE	-0.046	
	(0.016)	
treat	-0.019	-0.019
	(0.007)	(0.007)

Event Studies

What is an event study?

Event study is poorly named:

- In finance, even study is just an *interrupted time series*
- In econ and other areas, we usually have a treatment/control group *and* a break in time

What is an event study?

- Allows for heterogeneous effects over time (maybe effects phase in over time or dissipate)
- Visually very appealing
- Offers easy evidence against or consistent with parallel trends assumption

What is an event study?

Estimate something akin to...

$$y_{it} = \gamma_i + \gamma_t + \sum_{ au=-q}^{-2} \delta_ au D_{i au} + \sum_{ au=0}^m \delta_ au D_{i au} + eta x_{it} + \epsilon_{it},$$

where q captures the number of periods before the treatment occurs and m captures periods after treatment occurs.

How to do an event study?

- 1. Create all treatment/year interactions
- 2. Regressions with full set of interactions and group/year FEs
- 3. Plot coefficients and standard errors

Things to address

- 1. "Event time" vs calendar time
- 2. Define baseline period
- 3. Choose number of pre-treatment and post-treatment coefficients

Event time vs calendar time

Essentially two "flavors" of event studies

- 1. Common treatment timing
- 2. Differential treatment timing

Define baseline period

- Must choose an "excluded" time period (as in all cases of group dummy variables)
- Common choice is t=-1 (period just before treatment)
- Easy to understand with calendar time
- For event time...manually set time to t=-1 for all untreated units

Number of pre-treatment and post-treatment

- On event time, sometimes very few observations for large lead or lag values
- Medicaid expansion example: Late adopting states have fewer post-treatment periods
- Norm is to group final lead/lag periods together

Commont treatment timing

Stata

```
ssc install reghdfe
```

```
insheet using "data/acs_medicaid.txt", clear
gen perc_unins=uninsured/adult_pop
keep if expand_year="2014" | expand_year="NA"
drop if expand_ever="NA"
gen post=(year≥2014)
gen treat=(expand_ever="TRUE")
gen treat_post=(expand="TRUE")
```

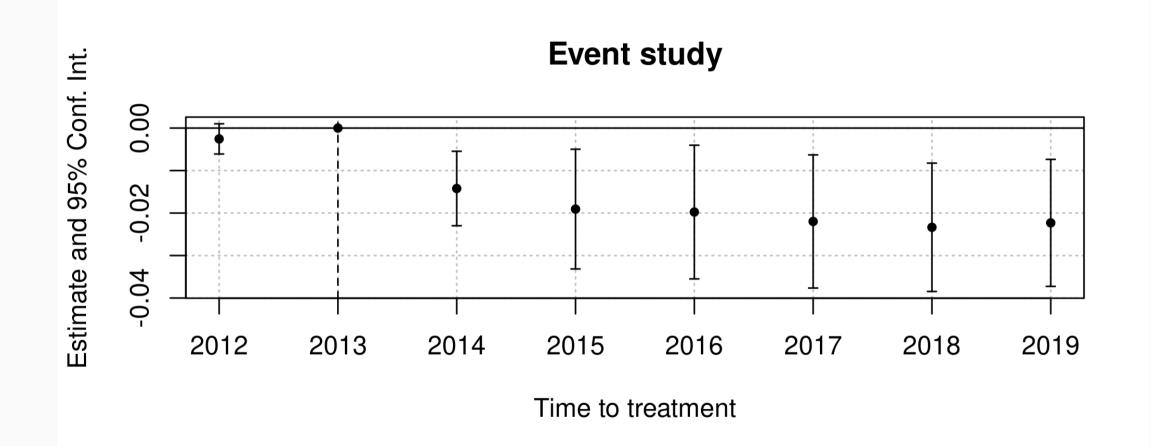
```
reghdfe perc_unins treat##ib2013.year, absorb(state)
gen coef = .
gen se = .
forvalues i = 2012(1)2018 {
    replace coef = _b[1.treat#`i'.year] if year = `i'
    replace se = _se[1.treat#`i'.year] if year = `i'
}
```

Make confidence intervals

```
gen ci_top = coef+1.96*se
gen ci_bottom = coef - 1.96*se
```

R

Common treatment timing



Differential treatment timing

- Now let's work with the full Medicaid expansion data
- Includes late adopters
- Requires putting observations on "event time"

Differential treatment timing

Stata

}

```
ssc install reghdfe
```

```
insheet using "data/acs_medicaid.txt", clear
gen perc_unins=uninsured/adult_pop
drop if expand_ever="NA"
replace expand_year="." if expand_year="NA"
destring expand_year, replace
gen event_time=year-expand_year
replace event_time=-1 if event_time=.
```

```
forvalues l = 0/4 {
   gen L`l'event = (event_time=`l')
```

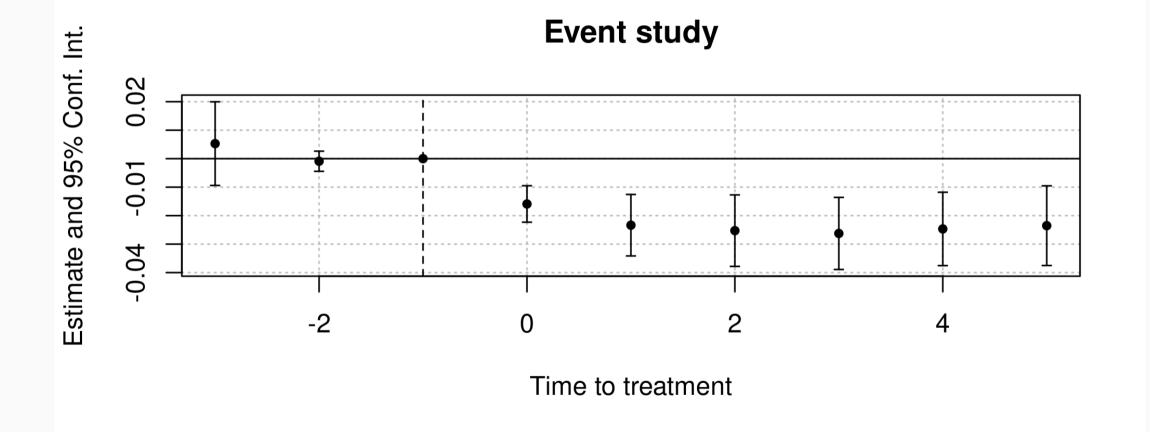
```
forvalues l = 1/2 {
   gen F`l'event = (event_time=-`l')
```

```
gen F3event=(event_time ≤ -3)
```

```
reghdfe perc_unins F3event F2event L0event L1event L2eve
gen coef = .
gen se = .
```

R

Differential treatment timing



What are we estimating?

Problems with TWFE

- Recall goal of estimating ATE or ATT
- TWFE and 2x2 DD identical with homogeneous effects and common treatment timing
- Otherwise...TWFE is biased and inconsistent for ATT

Intuition

- OLS is a weighted average of all 2x2 DD groups
- Weights are function of size of subsamples, size of treatment/control units, and timing of treatment
- Units treated in middle of sample receive larger weights
- Prior-treated units act as controls for late-treated units

Just the length of the panel will change the estimate!

Does it really matter?

- Definitely! But how much?
- Large treatment effects for early treated units could reverse the sign of final estimate
- Let's explore this nice Shiny app from Kyle Butts: Bacon-Decomposition Shiny App.

Note on parallel trends

Parallel trends violated, in general, if:

Policy endogeneity (e.g., selection into treatment due to prior outcome)
 Compositional differences (problematic in repeated cross-sections)